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Abstract-New domain integrals for extracting mixed-mode stress intensity factors along curved,
three-dimensional bimaterial interface cracks are derived. In the derivation, the asymptotic auxiliary
fields for the plane problem of a bimaterial interface crack are imposed along a curved crack front.
The general crack-tip interaction integral (a contour integral surrounding a point on the crack front
which is evaluated in the limit as the contour is shrunk onto the crack tip) is then expressed in
domain form which is morc suitable for numerical computation, A consequence of imposing the
auxiliary fields along a curved crack front is that the auxiliary stress fields do not satisfy equilibrium,
and the auxiliary strain fields do not satisfy compatibility. The terms which arise due to the lack of
equilibrium and compatibility are not sufficiently singular to contribute to the crack-tip interaction
integral or to affect its path independence; however, these terms become important when domain
integral representations are introduced, because they involve fields which are not asymptotically
close to the crack tip. In order to compute the pointwise stress intensity factors along the crack
front, the domain integrals are evaluated as a post-processing step in the finite element method. In
the numerical results, it is demonstrated that it is crucial to incorporate the terms that arise due to
lack of equilibrium and compatibility of the auxiliary fields, especially in regions where the local
crack front curvature is high. In the paper, we present two numerical examples. As a benchmark,
we first consider the problem of a penny-shaped interface crack embedded in a cylinder. The results
for the complex stress inten~;ity factor and phase angle are found to be in excellent agreement with
the analytical solution. The problem of an elliptical crack embedded between two dissimilar isotropic
materials is also considered, and the results are discussed ..:0 1998 Elsevier Science Ltd.

1. INTRODUCTION

The overall mechanical properties of advanced composite materials depend heavily on the
nature of the bond at bimaterial interfaces, Unfortunately, interfacial delamination and
fracture are commonly observed problems that may ultimately limit the use of these
materials (ranging from ceramic and metal matrix composites for the aerospace industry
to nanoscale structures for the microelectronics industry), The need to improve fracture
toughness has led to significant progress recently in the area of interfacial fracture mech­
anics, Excellent review articles on the subject have been written by Rice et at. (1988), Shih
(1990), and Hutchinson and Suo (1991),

Among the available methods for calculating fracture parameters, the domain integral
method has emerged as being well suited for bimaterial interface crack problems. In the
domain integral method, a crack-tip contour integral is expressed as a volume integral over
a finite domain surrounding the crack tip. The process of recasting the contour integral
into a volume integral is advantageous for numerical purposes, because accurate fracture
parameters can be obtained without having to precisely capture the details of the singular
fields in the vicinity of the crack tip, see Moran and Shih (1987a,b) for a general discussion
on crack-tip contour integrals and their associated domain integral representation, The
domain integral method has been employed by Li et ai, (1985) and by Shih et al. (1986)
to determine the energy release rate along straight, three-dimensional crack fronts in
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homogeneous solids. Shih and Asaro (1988) have employed domain forms of interaction
energy integrals to ex:ract mixed-mode stress intensity factors in planar bimaterial crack
problems. Nakamura and Parks (1989), and Nakamura (1991) have used this same
approach to determine the mixed-mode stress intensity factors along straight, three-dimen­
sional bimaterial inteIface cracks. Nikishkov and Atluri (1987) have developed a domain
integral approach to determine mixed-mode stress intensity factors along planar three­
dimensional crack fronts in homogeneous solids.

Domain representations of interaction energy integrals to extract mixed-mode stress
intensity factors for axisymmetric bimaterial crack problems have been derived recently by
Nahta and Moran (1993). In their work, they recognized that when the auxiliary fields that
appear in the integrand of the interaction integrals are imposed along a curvilinear crack
front, the auxiliary stress fields do not satisfy equilibrium, and the auxiliary strain fields
violate compatibility. Because of the lack of equilibrium and compatibility, along with
other local curvature effects, they appropriately incorporated additional terms (that ordi­
narily vanish for straight bimaterial interface cracks) in the resulting domain integrals.

In the present paper, we extend the work of Nahta and Moran (1993) to the general
three-dimensional case. In particular, we derive new domain integrals for extracting mixed­
mode stress intensity factors along curved bimaterial interface cracks, and we describe a
straightforward approach, which involves a post-processing step in the finite element
method, for evaluating the resulting domain integrals. Also, in the numerical results section
of the paper, we illustrate the importance of incorporating additional terms in the domain
integrals which arise clue to crack front curvature.

To outline the paqer, in the following section we describe the interaction energy integral
approach for extractirg mixed-mode stress intensity factors along curved, three-dimensional
crack fronts. In Section 3, we derive the domain representation of the interaction energy
integrals and discuss some of the key difficulties encountered in the evaluation of the
resulting domain inte.~rals. In Section 4, we present the numerical results for two example
problems. First we consider the case of a penny-shaped crack embedded between two
dissimilar isotropic materials subjected to remote tension and compare the present numeri­
cal results with the analytical solution. Second, to demonstrate our present capabilities for
the case of a general curvilinear bimaterial interface crack, we consider the problem of an
elliptical crack embedded between two different isotropic materials and the results are
discussed. Finally, in Section 5 we give a brief summary and some concluding remarks.

2. EXTRACTION OF MIXED·MODE STRESS INTENSITY FACTORS ALONG CURVED
BIMATERIAL INTERFACE CRACKS

In this section, we present the methodology for calculating the mixed-mode stress
intensity factors alon.~ three-dimensional, curved bimaterial interface cracks. We begin by
considering the curvilinear crack front as shown in Fig. 1. As shown in the figure, we define
a local orthogonal coordinate system at a point s along the crack front such that the local
X2 axis is perpendicullf to the plane of the crack, and the Xl and X3 axes lie in the plane of
the crack and are normal and tangent respectively to the crack front. Following Nahta and

X 3
Fig. 1. General curvilinear crack front.
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Moran (1993), the general crack-tip contour integral along the three-dimensional crack
front takes the form

(1)

where r(s) is a contour in the local Xl-X2 plane surrounding point s on the crack front,
~I(S) is the local crack extension, and nj is the unit outward normal to the contour r (see
Fig. 1). When the tensor Plj in eqn (1) is replaced by the energy momentum tensor (Eshelby,
1956, 1970), i.e.,

(2)

and the vector ~t<s) is define:d as the unit outward normal to the crack front in the local
XI-X3 plane, the crack-tip integral (1) yields the energy release rate G(s) due to crack
extension in its own plane. Here in eqn (2), W is the strain energy density, aij are the
components of the Cauchy stress, u, are the displacement components, and the comma
denotes partial differentiation with respect to the spatial coordinates.

A particularly convenient method for extracting mixed-mode stress intensity factors is
the interaction energy integral approach. Shih and Asaro (1988) have employed interaction
energy integrals to evaluate mixed-mode stress intensity factors in two-dimensional plane
problems. Nakamura and Parks (1989), and Nakamura (1991), have used this approach
for obtaining mixed-mode stress intensity factors along three-dimensional straight crack
fronts. It is emphasized that in the present paper, the interaction energy integrals are
developed for extracting mixed-mode stress intensity factors along curved three-dimensional
cracks. Because the present three-dimensional interaction energy integral approach is based
upon the assumption that the near-tip crack fields asymptote to the plane and antiplane
strain fields, the present development is not strictly applicable to crack fronts near a free
surface where the state of plane stress dominates. The latter case has been investigated by
Nakamura (1991) for the case of straight bimaterial interface cracks intersecting a free
surface. It turns out that at the intersection of the crack and the free surface, the singularity
is more severe than the usual 1/';; singularity. However, this singularity dominates only
in a very small region near the free surface. Plane strain conditions prevail outside this
small region, see Nakamura (1991) for more detail.

The interaction energy integral I(s) can be obtained by substituting the following
expression for the tensor Pu in the general crack-tip integral (1):

Hence,

I(s) = p~ ~I(S) r (af;:xef;:xblj - uf,'taij - ui./afr)nj dr
In.<)

(3)

(4)

where ufux, efr, and afr are the auxiliary displacement, strain and stress fields which will
be defined in the following section.

2.1. Interfacial fracture mechanics
Before defining the auxiliary fields that appear in the interaction energy integral (4),

we first provide a brief summary of the pertinent quantities that arise when dealing with
cracks in bimaterials. Consider the plane problem of an interface crack between two
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X 2

Fig. 2. Plane problem of an interface crack between two dissimilar isotropic materials.

dissimilar isotropic materials as shown in Fig. 2. For convenience, we adopt a local polar
coordinate system centered at the crack tip, and we label the material occupying the upper
half-plane as material 1 with Young's modulus E , and Poisson's ratio VI' The material
occupying the lower half-plane has moduli E2 and V2'

Using the notation of Rice et at. (1990), the near-tip stress fields can be written as

1. .
(Jij = - ~{Re[KrlC]0'~(8, e) +1m [Kr'"]0'{j(8, e) +KmO'W(8)}

,/2nr
(5)

where K = K/+ iKII is the complex stress intensity factor and aij are the universal angular
functions which depend on the bimaterial constant e.

Introducing the Kolosov constants

along with Dundurs' constants

1

3- 4V

K i = 3_Vi

i

1+v;

plane strain

plane stress
(6)

JJj(K2+1)-JJ2(K, +1)
IX = ------'-----

JJ] (K2 + 1) + JJ2 (K 1+ 1)

f3 = JJ,(K2- 1)-JJ2(K]-I)
JJI (K2 + 1) + JJ2 (K] + 1)

the bimaterial constant e can be defined as

1 (1- f3 )
e = 2n In 1 + f3 .

(7)

(8)

The in-plane traction vector t transmitted across the interface at a distance r ahead of the
crack tip can be relat~:d to the complex stress intensity factor K through

(9)

We note that the complex stress intensity factor has the dimensions [stress][tength)I!2-i".
The phase angle t/J is defined as the ratio of shear to normal in-plane tractions transmitted
across the interface at a distance r ahead of the crack tip. Thus, t/J is given by
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ljJ = 0"12(r,0) = Im[Kr
iC
].

0"22 (r, 0) Re[Krie ]
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(10)

The phase angle ljJ plays an important role in the initiation and direction of interface crack
growth and hence is an important parameter in the characterization of interfacial fracture
toughness. We note that in reporting the phase angle ljJ for a particular loading configuration
and geometry, a length quantity L must be specified. While the choice of L is arbitrary, in
practice it is typically chosen to be a characteristic length such as crack length or specimen
size.

The energy release rate G can be expressed in terms of the stress intensity factors
through the relation

were

and

E* = 2E~E;
E~ +E;

* 2{Ll {L2
{L =--

{LI + {L2

(11 )

(12)

plane strain

plane stress

(13)

2.2. Auxiliary fields
As a point s lying on a curved three-dimensional crack front is approached in the local

XI - X 2 plane, the near-tip fIelds asymptotically approach the plane and antiplane crack-tip
fields described in the previous section. Therefore, if the auxiliary fields that appear in the
integrand of the interaction energy integral (4) are defined to be the plane and antiplane
fields in the local X l -X2 pJlane with local stress intensity factors K'fux, K'fYX, and K'fY/, the
interaction energy integral is locally path-independent and, in the limit as r ~ 0, takes the
value

(14)

Thus, the process of evaluating the mixed-mode stress intensity factors involves making a
judicious choice of the auxiliary stress intensity factors, and then evaluating the interaction
energy integral (4). For example, to extract Kb we set K'fux = 1, K'fYx = K'fY/ = 0, from
which it follows from eqn (14) that

E* cosh2 (ne)
K(s) = 2 I(s). (15)

In order to numerically evaluate the interaction energy integrals developed in this
section for the extraction of mixed-mode stress intensity factors along curved bimaterial
interface cracks, it is advantageous to recast the contour integrals in their equivalent domain
forms which are developed in the following section. As pointed out by Nahta and Moran
(1993), a consequence of imposing the plane strain auxiliary fields along a curved crack
front is that the auxiliary stress fields do not satisfy equilibrium, and the auxiliary strain
fields do not satisfy the strain displacement relations (compatibility). While the terms
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which give rise to lack of equilibrium and compatibility are not sufficiently singular in the
asymptotic limit to contribute to the value of the interaction integrals or affect their path
independence, it is important not to neglect them in the evaluation of the equivalent domain
integrals (as illustrated in the numerical results section of this paper). This is because these
integrals involve fields which are not asymptotically close to the crack tip.

3. DOMAIN INTEGRAL FORMULATION

In this section, we derive the equivalent domain representations of the general crack­
tip contour integrals introduced in the previous section. To begin, we consider a small
segment L c of a curvec. crack front which lies in the local Xl-X3 plane as shown in Fig. 3.
Next, we assume that the segment undergoes a virtual crack advance in the plane of the
crack, and we define the magnitude of the advance at each point s as Aa(s). We note that
Aa(s) varies continuously along L c and vanishes at each end of the segment. Now let

I = r.I(s)Aa(s) ds
JL f

(16)

where I(s) is the general crack-tip integral defined by eqn (1). When I(s) pertains to the
pointwise energy release rate, I gives the total energy released when the finite segment L c

undergoes the virtual crack advance. Similarly, when I(s) pertains to the interaction energy
integral, I yields the total interaction energy for the virtual crack advance.

The appropriate domain forms of the pointwise interaction energy integrals and energy
release rate can be obtained from eqn (16) by considering a tubular domain V surrounding
the crack segment as shown in Fig. 4. As shown in the figure, the surface S, is formed by

Fig. 3. Small segment of a curved crack front that undergoes a virtual crack advance ~a(s).

Fig. 4. Tubular domain surrounding a segment of the crack front.
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translating the contour r along the crack segment Lc We denote by So the outer surfaces
of V including the ends. Next, we introduce a test function q, which is sufficiently smooth
in V and is defined on the surfaces of Vas follows:

q, = {Aa(S)¢,(S) on S, .

o on So
(17)

Finally, in the limit as the tubular surface S, is shrunk onto the crack segment L e , in the
absence of crack face tractions, we obtain the domain integral

(18)

A simple relationship be:tween the domain/volume integral [and the pointwise crack­
tip integral I(s) can be obtained if it is assumed that I(s) is constant along the small crack
segment L e • It then follows directly from (16) that

[
I(s) = .

LAa(S) ds

(19)

In practice, the evaluation of the integral that appears in the denominator of eqn (19) is
straightforward (see Appendix A).

3.1. Evaluation of the domain representation of the interaction integral
In the evaluation of the energy release rate, under conditions that render the tensor pT

divergence free (i.e., in the absence of body forces, thermal strains, inertia, etc.) the integral
[given by eqn (18) reduces to the domain representation of the familiar J-integral, i.e.,

[=J=1 G(s)Aa(s)ds= -ftr[(WI-VuoO')oVq]dV.
L( v

(20)

The numerical evaluation of the domain integral (20) can be carried out as a straightforward
post-processing step in the Jlnite element method, see, for example, Shih et al. (1986) for
details. Special care must he taken, however, in the evaluation of the equivalent domain
form of the interaction energy integral. As discussed in Section 2, when the auxiliary fields
are imposed along a curved crack front, the auxiliary stress fields do not satisfy equilibrium,
and the auxiliary strain fields are not the symmetric gradient of the auxiliary displacement
fields, i.e., 8°UX #- V.,uoux

• For these reasons, the tensor pT, as defined by eqn (3), is not
divergence free, and the equivalent domain form of the interaction integral is given by eqn
(18) with

(21)

Equation (21) can be expressed in Cartesian components as

(22)

The main difficulty in calculating the interaction energy integral lies in the evaluation of
the gradients and higher order gradients of the auxiliary fields that appear in the integrand.
To illustrate a convenience procedure to evaluate these gradients, we consider a point p
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Fig. 5. Local curvilinear coordinate system.

which lies in the local XI-X2 plane as shown in Fig. 5. Next, we construct an orthogonal
~ I, ~2' ~3 curvilinear coordinate system with base vectors e], e2, and e3 as shown in the figure.
We note that the ~l and ~2 axes form straight lines which are parallel to the Xl and X2 axes,
respectively, and the coordinate curve ~3 is formed by keeping the polar coordinates rand
() shown in the figure fixed and moving along the crack front s. Because the auxiliary fields
do not vary along tht coordinate curve ~3' it is convenient to express the components of
the gradients of the auxiliary fields at point p in the curvilinear coordinate system. For
example, in the extraction of the mode I and mode II stress intensity factors, u~ux and uQ

{'

are the only nonzero auxiliary displacement components. For this case, the gradient of the
auxiliary displacement field at point p is written as

(23)

and the components are given by

uQUX

2,1

uaux
2.2

o
(24)

In eqn (24), p is the local radius of curvature of the coordinate curve ~3 evaluated at point
p. We note that the local radius of curvature p is related to the local radius of curvature Ps
of the crack front at point s through the relation
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(25)

where x~ is the local XI coordinate of point p.
In the calculation of the mode III stress intensity factor, u'3ux is the only nonzero

auxiliary displacement component, and thus for this case we have,

(26)

(27)

For the sake ofcompleteness, the details of the finite element evaluation of the domain
representations for the energy release rate and the interaction energy integrals are given in
Appendix A. In addition, we have provided the explicit forms (in terms of the polar
coordinates rand 8) of the auxiliary displacement fields in Appendix B. The derivatives
and higher order derivatives of the auxiliary fields given in Appendix B are obtained through
a repeated use of the chain rule.

4. NUMERICAL RESULTS

In order to demonstrate the accuracy and utility of the interaction energy integral
formulation presented in the previous sections, we consider two numerical examples. First,
we consider the case of a penny-shaped interface crack in an infinite body subjected to
remote tension. Second, to illustrate the generality of the present method and the importance
of retaining the curvature terms that appear in the domain integral formulation discussed
in the previous section, we also consider the case of an elliptical interface crack embedded
in an infinite solid subjected to remote tension.

4.1. Penny-shaped interface crack
As a benchmark, we consider the problem of a penny-shaped crack of radius a

embedded in an infinite solid subjected to the remote tension (Jo. The analytical solution for
the complex stress intensity factor K has been obtained by Kassir and Bregman (1972) and
is given as

. r::r(2+ie) -iF.
K/+zKl/ = 2(Joy a r(l . ) (2a)

2+ ze
(28)

where r is the gamma function, and e is the bimaterial constant.
The details of the three-dimensional model employed in the numerical calculation are

shown in Fig. 6. As shown in the figure, we consider the material combination of glass
(E1 = 1 X 107 psi, VI = 0.22) bonded to steel (E2 = 3 X 107 psi, V2 = 0.3) which yields a
bimaterial constant e = 0.06557 with E* = 1.594 X 107 psi. Denoting the radius of the crack,
the outer radius of the cylinder, and the height of the cylinder by the parameters a, b, and
h respectively, the geometry of the model was chosen such that alb = 0.1, and hlb = 1.0.
These ratios were chosen so as to make any contributions to the domain integrals dm: to
boundary effects negligible. In order to simulate the case ofa penny-shaped crack embedded
in a cylinder, the following !boundary conditions were enforced:

XI =0; UI =0

X3 = 0; U3 = 0

X 2 = ±h; (T22 = (Jo. (29)
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Fig. 6. Penny-shaped crack between two dissimilar isotropic materials.

The finite element mesh used in the numerical calculation is composed of 6264 eight­
node brick elements (7257 nodes) and is shown in Fig. 7a. The details of the mesh in the
vicinity of the crack front are shown in Fig. 7b. The finite element domains used to evaluate
the domain representation of the J-integral (20) and the interaction integral (18) were
constructed by sweeping a square, two-dimensional crack-tip mesh with sides oflength 0.2a
along the circular crack front while keeping the two-dimensional crack-tip mesh normal to
the crack front. The smallest elements at the crack tip have a characteristic length ofO.002a,
and we emphasize that no singular elements were employed in the numerical calculations.

Normalized numerical and analytical results are shown in Table 1, where excellent
agreement between the numerical and analytical results can be seen. We note that the
numerical values for the stress intensity factors K1 and KII reported in the table were
obtained by evaluating the appropriate interaction energy integrals (18), and the energy
release rate G was computed by evaluating the domain integral (20).

4.2. Elliptical interface crack
To demonstrate our present capabilities for the case ofgeneral curvilinear crack fronts,

we consider the problem of an elliptical crack embedded between two dissimilar isotropic

Table I. Comparison of the numerical results with the analytical solution for a penny-shaped interface crack
under remote tension.

1t£* cosh2 (m;)G fi Re [K(2a)"] fi 1m [K(2a)'C]
IjJ

GE* cosh2 (1t8)

4a;a 2a"jW 2a"jW KK

Analytical 1.0185 0.9969 0.1565 0.1557 1.000
Numerical 0.9509 0.9659 0.1524 0.1564 0.994
% error -6.6% -3.1% -2.63% 0.48% -0.56%
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(a)

(b)

Fig. 7. The finite element mesh used for the penny-shaped crack problem (a), and details of the
mesh in the vicinity of the clack front (b). The mesh is composed of 6264 eight-node brick elements

(7257 nodes).

1773

materials subjected to the remote tension (fa- Utilizing symmetry, it is only necessary to
consider one-quarter of the problem as shown in Fig. 8. As shown in the figure, the elliptical
crack front is characterized by the aspect ratio alc, and the characteristic dimensions W
and h are chosen so that the boundary correction factors for this particular geometry can
be considered negligible. In the present analysis, we have chosen the dimensionless ratios
as follows:

alc = 0.4

Wlc = 10.0

hlW = 1.0. (30)

The boundary conditions applied to the quarter model are given by (29), and the finite
element mesh is composed of 6340 eight-node brick elements (7548 nodes) as shown in Fig.
9a. Again, the details of the mesh in the vicinity of the crack front are generated by sweeping
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X 3
(a) (b)

Fig. 8. Elliptical crack embedded between two dissimilar isotropic materials. Top view (a), and side
view (b).

a two-dimensional crack-tip mesh along the elliptical crack front as shown in Fig. 9b. Here,
the two-dimensional crack-tip mesh has sides of length O.2e, and the characteristic length
of the smallest elements near the crack tip is O.002e.

The analytical solution for the mode I stress intensity factor for the case of an elliptical
crack embedded in an infinite homogeneous and isotropic solid has been obtained by Irwin
(1962). His result can be written as

where the quantity Q is the square of an elliptical integral of the second kind given by

{fn
/2[ e2 -a2 JI /2}2

Q= I---sin2 ¢ d¢
o e

2

(31)

(32)

and ¢ is the parametric angle which is defined in Fig. 10.
The numerical results for the homogeneous case are compared with the analytical

solution as shown in Fig. 11 where the normalized mode I stress intensity factor is plotted
versus the parametric angle ¢. We note that the pointwise values K[(¢) are obtained by
evaluating the domain representation of the interaction integral (18). As shown in the
figure, excellent agreement is obtained between the numerical and analytical results (the
maximum error is less than 2%). The numerical result obtained by neglecting the terms in
the integrand of the mteraction integral that arise due to the local curvature of the crack
front is also plotted in Fig. 11. The error between this result and the analytical solution is
greater than 10% in the region where the local crack front curvature is high and decreases
to about 2% in the wgion of low crack front curvature.

For the homogeneous case, the mode I stress intensity factor K[ is related to the energy
release rate G through the relation
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(a)

(b)

Fig. 9. The finite element mesh used for the elliptical crack problem (a), and details of the mesh in
the vicinity of the crack front (b). The mesh is composed of 6340 eight-node brick elements (7548

nodes).

Ki = E*G.

1775

(33)

As an additional check an the present numerical results, we also compute the pointwise
energy release rate by evaluating the domain representation of the J-integral (20) and plot
the ratio E*GjKi versus ¢ as shown in Fig. 12. As shown in the figure, excellent consistency
between the pointwise value:s of G and K1 are obtained. Here, when the curvature terms in
the integrand of the interaction integral are neglected, significant error (about 18%) occurs
in the region where the local crack front curvature is high.

Next, we analyze an elliptical crack embedded between two dissimilar isotropic
materials. As in the penny-shaped crack example, we consider the case of glass (E] = 1 x 107

psi, VI = 0.22) bonded to steel (E2 = 3 X 107 psi, V2 = 0.30) for which e = 0.06557 and
E* = 1.594 X 107 psi. The numerical results for the normalized mode I and mode II stress
intensity factors plotted versus the parametric angle ¢ are shown in Fig. 13 and Fig. 14,
n:spectively. As shown in Fig. 14, the material mismatch causes significant mode II loading
near the crack tip, and when the curvature terms are neglected, significant error is present
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J
Fig. 10. Definition of the parametric angle cP.

90

--- Analytical
'it- - Numerical

- - e- - - Numerical (curvature terms neglected)

1.1

1.0

0.9

'2 0.8
!? ~

'-"r
~

0 0.7b

0.6 (y"cT

0.5

0.4
0 15

Fig. 11. Normalized mode I stress intensity factor K[ plotted vs parametric angle cP for the case of
an elliptical crack embedded in a homogeneous solid.

in the region of high local crack front curvature, especially for the mode II stress intensity
factor where the maximum error exceeds 35%. The phase angle ljI, using a characteristic
length L = 2c, is plotted versus 4> as shown in Fig. 15. As shown in the figure, the phase angle
is relatively constant along the crack front and reaches a maximum value of approximately
ljI = 12° at 4> = 21 0

• Again, the phase angle is in significant error when the curvature terms
are neglected.

The results for the mode III stress intensity factor along the crack front are shown in
Fig. 16. To indicate the relative strength of antiplane deformation, we have defined a second
phase angle q> in terms of Klll as follows:

-I { Klll
}

q> = cos 21J-*G' (34)

Here, G is the energy release rate which is expressed in terms of the stress intensity factors
in eqn (11). The pha~,e angle q> is plotted versus parametric angle 4> as shown in Fig. 16. As
shown in the figure, ':he numerical results indicate that the mode III stress intensity factor
is very small along the entire crack front (note that a phase angle q> = 900 indicates Kill = 0).
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Analytical
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Fig. 12. The energy release rate G (computed from the J-integral) normalized with respect to the
stress intensity factor KJ (computed from the interaction energy integral) plotted vs parametric

angle r/J for the C,lse of an elliptical crack embedded in a homogeneous solid.

75 90

Fig. 13. Normalized stress intensity factor KJ plotted vs parametric angle r/J for the case of an
elliptica Ibimaterial interface crack between glass and steel.

The phase angle ({J reaches a maximum of approximately 91 ° at the ¢ = 21 0 location, and
it approaches 90° (KIll = 0) at both the ¢ = 0° and ¢ = 90° locations as one would expect
due to the symmetry of the :problem.

5. SUMMARY AND CONCLUDING REMARKS

In the present paper, domain representations of interaction energy integrals were
derived for evaluating mix,ed-mode stress intensity factors along curvilinear bimaterial
interface cracks. In the derivation, the asymptotic fields for the plane problem ofa bimaterial
interface crack were imposed along a curved crack front. The general crack-tip interaction
integral (a contour integral surrounding a point on the crack front which is evaluated in
the limit as the contour is shrunk onto the crack tip) was then expressed in domain form
and was evaluated as a post..processing step in the finite element method. As a consequence
of imposing the auxiliary fields along a curvilinear crack front, the auxiliary stress fields do
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Fig. 14. Normalize,d stress intensity factor K!I plotted vs parametric angle ¢ for the case of an
elliptical bimaterial interface crack between glass and steel.
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Fig. 15. The phas(' angle ljJ (L = 2c) plotted vs parametric angle ¢ for the case of an elliptical

bimaterial interface crack between glass and steel.

not satisfy equilibrium, and the auxiliary strain fields are incompatible with the auxiliary
displacement fields. Because of the lack of equilibrium and compatibility, along with other
local curvature affects, additional terms must be included in the resulting domain integrals.
In the numerical results, it was demonstrated that it is crucial to maintain these additional
terms, especially when the local crack front curvature is high. In the paper, we presented
two numerical examples. As a benchmark, we first considered the problem of a penny­
shaped interface crack embedded in a cylinder. The results for the complex stress intensity
factor and phase angle were found to be in excellent agreement with the analytical solution.
The problem of an elliptical crack embedded between two dissimilar isotropic materials
was also considered. It was found that the mismatch in the elastic constants between the
two materials caused significant mode II loading near the crack tip, and it was found that
the phase angle IjJ re:nained relatively constant along the entire crack front. The mode III
stress intensity factor along the crack front was found to be very small compared to the
mode I and mode 1] stress intensity factors. In all cases, the results were found to be in
significant error when the additional curvature terms were neglected.
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Fig. 16. The phase angle ip plotted vs parametric angle 1> for the case of an elliptical bimaterial
interface crack between glass and steel.

As a final remark, we n>Jte that the method presented in this paper may be extended
to the case of a curved bimaterial interface crack between dissimilar anisotropic materials.
This will involve using the near-tip fields for the plane problem of an interface crack between
different anisotropic materials in the interaction energy integrals.
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APPENDIX A

A brief description of the finite element evaluation of the domain representations for the energy release rate
and the interaction energy integrals introduced in Section 2 is outlined below. In order to illustrate the procedure,
we consider the situation where the volume V containing a segment of the crack front is discretized with 32 eight­
node brick elements as show] in Figs A. I and A.2. A cross-section of the finite element mesh which is perpendicular
to the plane of the crack anj passes through a node M which lies on the crack front is illustrated in Fig. A.I. A
view of the cross-section which lies in the plane of the crack and passes through M is shown in Fig. A.2. Consistent
with a standard isoparametric finite element formulation, we interpolate the test function q/ within an element in
V using the trilinear finite element shape functions, i.e.,

8

q, = L NaQl'
a=1

(A-I)

where Qf are the discrete nodal values of the test function. In the present analysis we have chosen the nodal values
such that

.. X
1

2a

pper crack face

ower crack fllce M

u

2b
Fig. A.I. Cross-section of finite element mesh which is normal to the plane of the crack and passes

through node M.

Fig. A.2. Cross-section of finite element mesh which lies in the plane of the crack and passes through
node M.
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ifx'3 = Oand Ix,; I < band Ix,l < a

otherwise
(A-2)

whe:re the dimensions a and b are defined in Fig. A.I.
The discrete form of the domain integral (18) is then written as

where

8

qtj = I Na.jQi.
a=l

(A-3)

(A-4)

In the present analysis, the integratiJn (A-3) was carried out using 2 x 2 x 2 Gauss quadrature. It follows directly
from the definition (A-2) that the magnitude of the virtual crack advance ,1.a(s) varies linearly along L, with
,1.a(s) = I at node M and ,1.a(s) = I) at nodes M -I and M + I as shown in Fig. A.2. Thus, the integral in the
denominator of eqn (19) yields

(A-5)

and the pointwise value I(s) at node: M is given by

(A-6)

where L, and L2 are the lengths of the chords defined in Fig. A.2.
A detailed computational procedure for evaluating the pointwise value I(s) at node M is given in Table 2.

Table 2. Computational procedure for evaluating 1M

I. Compute the components of the unit outward normal to the mathematical crack front at node M.
2. Loop over elements e = 1,2, ... '

2.1 Compute element nodal coe,rdinates in local crack-tip coordinate system with origin at mode M.
2.2 If e E V go to Step 2.3; else go to next element, Step 2.
2.3 Compute the nodal values QI of the test function qt.
2.4 Set up integration points and weights (2 x 2 x 2 quadrature employed).
2.5 Loop over integration points I = I to 8.

2.5.1 Evaluate the shape functions Nu and global derivatives aNa/aX. at the integration point.
2.5.2 Evaluate the test function qt and global derivatives aqt!ax. at the integration point.
2.5.3 Set up new local crack-tip coordinate system as follows:

a. Compute the global coordinates of the integration point p.
b. Determine the coc rdinates of point P', the projection of the integration point onto the plane of

the crack front.
c. Find the point s on the mathematical crack front that is closest to the point P'. The coordinates

of point s are obtamed by minimizing the distance formula using, e.g., Newton's Method. Point s
becomes the origin of the local crack-tip coordinate system.

2.5.4 Determine the coordinates of the integration point p in the local crack-tip coordinate system.
2.5.5 Calculate the radius of curvature p, of the mathematical crack front at point s.
2.5.6 Using eqn (24), calcillate the radius of curvature p of the coordinate curve ~3 (see Fig. 5) at the

integration point p. ::t is also necessary in this step to compute the derivatives ap/a~ 1 and ap/a~3

which appear in certain components of the tensor vuauxV when extracting the mode I and mode II
stress intensity factors.

2.5.7 Calculate the local crack-tip angle e(see Fig. 5).
2.5.8 Compute the distanc>~, Y, from point s to the integration point p.
2.5.9 Compute the integrnd as follows:

a. Compute tr[(WI-.VU· 0'). Vq] fo!..J-integ~1.
b. Given Y, e, and p, compute tr(P' vq) + (V· pT) •q f~ in~ractio~ ene~y integral.1.t is con­

venienUo express the components of all of the tensors (VU, Vuaux, VuauxV, eauX, eauxV, (T, (J"'U\

q, and vq) in the local crack-tip coordinate system set up in step 2.5.3.
2.5.10 Add the contribution computed in step 2.5.9 to pt.
2.5.11 Go to the next integration point, Step 2.5.

2.6 Go to the next element, St,~p 2.
3. Compute 1M from eqn (A-6).
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APPENDIX B

In this appendix we provide the auxiliary displacement fields that appear in the integrand of the interaction
energy integrals defined in Section 2. For the extraction of the mode I and mode II stress intensity factors, the
components of the auxiliary displacement fields in the local x, -X2 plane (see Fig. 2) are written as

u~"X 411 CO~h(nE) /f/,(r, 0, E, 11) i --> I to 2.

To extract Kb the functions/, to be used in eqn (B-1) are given as

/,(r,O,E,I1) = D+2c5sinOsin</>

/2(r,0,E,I1) = -C-2c5sinOcos</>

whereas to extract KII, the functions are given by

/,(r,O,S,I1) = -C+2c5sinOcos</>

/,(r,O,s,l1) = -D+2c5 sinO sin </>.

The constants C, D, c5, and </> that appear in (B-2) and (B-3) are defined as follows:

o
</> = sln(r) + 2

_ 0 0
C = Pycos2 -J3jisin 2

o _ 0
D = /3ycos 2-/3ysin 2
/3 = 0.5 cos(sln r) +S sin(sln r)

0.25+E2

0.5 cos(sln r) -s sinCE In r)

0.25+s'

I
y = Kc5- b

I
Y = Kc5+ b

K = 3-4v.

(B-1)

(B-2)

(B-3)

(B-4)

We note the auxiliary disp.acement components defined by eqn (B-1) through (B-4) above are valid for points
that lie in the upper half-plane (material I) according to the convention depicted in Fig. 2. To obtain the
displacement components irI the lower half-plane (material 2), we simply replace n with -n in the definition of c5
given in (B-4).

For the extraction of the mode III stress intensity factor, the component u']"X is the only nonzero auxiliary
displacement component and is given as

u']"X = ±(;n)'I' sin~ upper half-plane

2 ( r )'12
0

u~"X =;; 2n sin 2 lower half-plane. (B-5)

The auxiliary strain components are obtained from the auxiliary displacement components as follows:
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for extracting the mode I and II stress intensity factors, and
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(B-6)

(B-7)

for extracting the mode III stress intensity factor. For each case, the auxiliary stress fields are obtained from the
auxiliary strain fields using Hooke's law.


